Dynamic Selection of Evolutionary Algorithm Operators Based on Online Learning and Fitness Landscape Metrics
نویسندگان
چکیده
Self-adaptive mechanisms for the identification of the most suitable variation operator in Evolutionary meta-heuristics rely almost exclusively on the measurement of the fitness of the offspring, which may not be sufficient to assess the optimality of an operator (e.g., in a landscape with an high degree of neutrality). This paper proposes a novel Adaptive Operator Selection mechanism which uses a set of four Fitness Landscape Analysis techniques and an online learning algorithm, Dynamic Weighted Majority, to provide more detailed informations about the search space in order to better determine the most suitable crossover operator on a set of Capacitated Arc Routing Problem (CARP) instances. Extensive comparison with a state of the art approach has proved that this technique is able to produce comparable results on the set of benchmark problems.
منابع مشابه
Dynamic selection of evolutionary operators based on online learning and fitness landscape analysis
Self-adaptive mechanisms for the identification of the most suitable variation operator in Evolutionary Algorithms rely almost exclusively on the measurement of the fitness of the offspring, which may not be sufficient to assess the optimality of an operator (e.g., in a landscape with an high degree of neutrality). This paper proposes a novel Adaptive Operator Selection mechanism which uses a s...
متن کاملFitness Landscape Analysis for Dynamic Resource Allocation in Multiuser OFDM Based Cognitive Radio Systems
Cognitive Radio (CR) is a promising technique for improving the spectrum efficiency in future wireless network. The downlink transmission in a multiuser Orthogonal Frequency Division Modulation (MU-OFDM) based CR system is investigated. Optimal allocating transmit power, bits and subcarriers among cognitive radio users (CRUs) can achieve high throughput while satisfying the given quality of ser...
متن کاملData-based melody generation through multi-objective evolutionary computation
Genetic-based composition algorithms are able to explore an immense space of possibilities, but the main difficulty has always been the implementation of the selection process. In this work, sets of melodies are utilized for training a machine learning approach to compute fitness, based on different metrics. The fitness of a candidate is provided by combining the metrics, but their values can r...
متن کاملNeuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014